Alcohol and Drug Abuse Research Center
Center for Depression, Anxiety and Stress Research
McLean Imaging Center
Clinical Unit Based Research
Mailman Research Center
Shervert H. Frazier Research Institute
Clinical Trials
Inventions for License
Research News
Administration

MAILMAN RESEARCH CENTER

Press Releases

McLean Researchers Awarded $1.9 Million Grant for Stem Cell, Blood Research

New Stem Cell Technique Eliminates Risks and Ethical Concerns

Molecular Neurobiology Laboratory

Abnormal regulation/degeneration of midbrain dopamine neuron is associated with major neurological and psychiatric disorders such as Parkinson’s disease, schizophrenia, and substance abuse. We are interested in understanding the molecular mechanisms underlying the development and maintenance of dopamine neurons in healthy and diseased brains. This is accomplished through detailed mechanistic studies of the relationship between critical extrinsic signals and intrinsic transcription factors, leading to important genetic networks and their functional roles in orchestrating the development and maintenance of dopamine neurons. Based on this molecular information, we seek to translate our results to preclinical and clinical application for neurodegenerative disorders such as Parkinson’s disease. In particular, we identified several key transcription factors that are crucial for early development and long-term maintenance and protection of midbrain dopamine neurons, leading us to identify them as potential drug targets for neurodegenerative disorders. We established efficient in vitro and in vivo assay systems and are currently investigating the development of novel therapeutics that may have neuroprotective and disease-modifying effects on neurodegenerative disorders.

Molecular Neurobiology Lab Staff

The Molecular Neurobiology Lab Staff
(click to enlarge)

Another area of research interest is the study of stem cells. In particular, we have recently focused on the development of clinically feasible and safe induced pluripotent stem (iPS) cell technology, which has great potential to study and treat human diseases. At present, the majority of iPS cells are derived through the use of viral vectors, resulting in clinically unsafe stem cells. We are interested in developing clinically and biomedically ideal iPS cells by safe techniques such as protein-based reprogramming with the long-term goal of advancing future personalized regenerative medicine. Once this technology is fully optimized, it will open an era of ‘cellular alchemy’ and provide potential platforms for human disease mechanism studies and novel therapeutic developments.

Personnel

Representative Publications

01.2013